From forest to low greenhouse gas jet fuels with a developed catalytic pyrolysis technology

Bio-oils produced from wood by existing conversion technologies (e.g. pyrolysis) are incompatible with current jet engines and fuel infrastructure. Bio-oil instability, corrosivity, high viscosity, and low energy density are significant barriers to using bio-oil as jet fuel, necessitating its upgrading.
This project aims to develop an efficient fast pyrolysis process for converting waste wood into jet biofuels. A novel structured zeolite catalyst (hierarchical and nano-sized crystals) will be designed and engineered in a customized process (steam cracking, hydrocracking and catalytic cracking) to produce a new biofuel in high yield and quality.
In this project, RISE together with LTU will examine such a process for an efficient conversion of forestry residues into jet biofuels. New jet biofuels produced sustainably in Sweden from existing forestry residues enables the substitution of fossil jet fuels with biofuels reducing GHG emissions reaching the zero CO2 emissions goal by 2050.

Hoda Shafaghat
RISE Research Institutes of Sweden
hoda.shafagat@ri.se
Project information
Participants
RISE Research Institutes of Sweden
Luleå university of Technology
Time schedule
January 2022 – December 2024
Total cost of project
3 816 405 SEK
Swedish Energy Agency's project number
2021-00086
More projects

CelluXtreme – Feasibility study for scaleup
CelluXtreme has a unique technology for spinning strong fibers from 100% nanocellulose with green chemistry and with low emissions to air and…
Manager: Anna Wiberg
Ongoing

The future of biofuel production in the EU – potentials, technologies and policies
Biofuel markets in the EU are undergoing rapid changes. Changes in the policy landscape due to increased climate ambitions is expected to…
Manager: Jonas Zetterholm
Ongoing

Biogas production from pelleted and briquetted straw, roadside grass and reeds
The EU Commission has a target of production of 350 TWh biomethane by 2030, and in Sweden a target of 10 TWh…
Manager: Anders Hjort
Ongoing