From forest to low greenhouse gas jet fuels with a developed catalytic pyrolysis technology

Bio-oils produced from wood by existing conversion technologies (e.g. pyrolysis) are incompatible with current jet engines and fuel infrastructure. Bio-oil instability, corrosivity, high viscosity, and low energy density are significant barriers to using bio-oil as jet fuel, necessitating its upgrading.
This project aims to develop an efficient fast pyrolysis process for converting waste wood into jet biofuels. A novel structured zeolite catalyst (hierarchical and nano-sized crystals) will be designed and engineered in a customized process (steam cracking, hydrocracking and catalytic cracking) to produce a new biofuel in high yield and quality.
In this project, RISE together with LTU will examine such a process for an efficient conversion of forestry residues into jet biofuels. New jet biofuels produced sustainably in Sweden from existing forestry residues enables the substitution of fossil jet fuels with biofuels reducing GHG emissions reaching the zero CO2 emissions goal by 2050.

Hoda Shafaghat
RISE Research Institutes of Sweden
hoda.shafagat@ri.se
Project information
Participants
RISE Research Institutes of Sweden
Luleå university of Technology
Time schedule
January 2022 – December 2024
Total cost of project
3 816 405 SEK
Swedish Energy Agency's project number
2021-00086
More projects

Oxy-Kraft recovery boiler – Towards novel integrated green energy parks
Kraft recovery boilers, i.e., boilers burning pulping industry spent liquor (black liquor) and recovering pulping chemicals, generate both electricity and heat. Black…
Manager: Shareq Mohd Nazir
Ongoing

Efficient biofuel production and logistics at terminals and industry
The project’s overall objective is to produce quality-assured knowledge that can be applied directly in practice and enables increased efficiency in the…
Manager: Erik Anerud
Ongoing

Novel energy and resource-efficient value chains through co-combustion of straw fuels and sludge
Sweden has an untapped potential of straw fuels of 20 TWh on unused arable land of approximately 700 000 ha and further…
Manager: Marcus Öhman
Ongoing