Production of hydrogen and biochar from woody biomass via steam iron process utilizing iron ore concentrate

This project examines a novel method for production of hydrogen and biochar from forestry residues.
The principal idea is an integrated process for polygeneration which uses biomass-derived product gas generated during pyrolysis as feedstock, in a process utilizing the Steam Iron Reaction (SIR), to produce pure hydrogen and concentrated CO2. The reactions would be conducted in two or three interconnected fluidized-bed reactors, depending on site and configuration. Iron ore concentrate particles are used to carry and distribute chemical energy, heat and oxygen through the system.
The concept offers a robust pathway where environmentally benign minerals are used to produce biochar and hydrogen with inherent CO2 capture.
The key activities of the project are
- examination of redox behavior of iron ore fines with raw product gas
- development of novel reactor with counter-current flow pattern
- process design with respect to mass and energy balances and techno-economic analysis.

Magnus Rydén
Chalmers University of Technology
magnus.ryden@chalmers.se
Project information
Participants
Chalmers
BioShare AB
Time schedule
November 2022 - July 2025
Total cost of project
5 282 030 SEK
Swedish Energy Agency project number
2022-00544
More projects

Prestudy for commercial plants for OFS sustainable biofuels
Organofuel Sweden AB aims to commercialize a new, innovative and sustainable conversion process for biofuel production for road traffic and aviation. The…
Manager: Erik Nelsson
Ongoing

Biochar stability validation – reaching a new level of understanding and transparency
Biochar produced from biomass has large potential to provide negative greenhouse gas emissions as a stable carbon sink in soil. A major…
Manager: Cecilia Sundberg
Ongoing

Ground-breaking trials for efficient bioash as a sustainable resource
This project aims to streamline recycling of biogenic ash to forest land, but also to study how different ash transformations affect their…
Manager: Mikael Thyrel
Ongoing