Lignin-based batteries

The project aims to develop new natural, water-based organic redox solutions based on lignin, such as electrolytes in a flow coil. These have the potential to drastically reduce the cost of energy storage for stationary applications in comparison with, for example, corresponding flow batteries based on vanadium or Li-ion batteries.
In the project, the by-product lignin from pulp and paper production will be modified by using a new method for depolymerization of lignin, which has been developed in chemical engineering at LU. The solutions will then be characterized electrochemically in a flow battery in chemical engineering at KTH.
Within the framework of the project, the oxidative depolymerization will first be optimized to generate suitable lignin fragments both as they are after depolymerization and after further modification. The batteries come with properties such as cell resistance, capacity conservation and coulombic efficiency.
Scientific output
Several articles have been produced from the project:
- Lignin-Based Electrolytes for Aqueous Redox Flow Batteries (2024)
- Recent strides toward transforming lignin into plastics and aqueous electrolytes for flow batteries (2024)
- Oxidative Depolymerization of Kraft Lignin to Aromatics Over Bimetallic V–Cu/ZrO2 Catalysts (2023)
- On the Oxidative Valorization of Lignin to High‐Value Chemicals: A Critical Review of Opportunities and Challenges (2022)
Additional manuscripts are under production. Once published, the articles will de added to the list of articles.

Christian Hulteberg
Lunds universitet
Project information
Participants
Lunds universitet
Kungliga tekniska högskolan
Miscancell
Schedule
January 2022 – December 2024
Total project cost
7 467 119 SEK
The Swedish Energy Agency's project number
2021-00137
More projects

Tree species experiment focused on biomass production – Growth, carbon sequestration and biodiveristy
Forestry can counteract an increase in greenhouse gases through its large capacity to store carbon and through the substitution of fossil fuels….
Manager: Nils Fahlvik
Ongoing

Maximizing Biogas production with Post-treatment applications
Anaerobic digestion is a sustainable process that combines waste management, nutrient recycling and clean energy production. However, a significant portion of the…
Manager: Alex Enrich Prast
Ongoing

Novel energy and resource-efficient value chains through co-combustion of straw fuels and sludge
Sweden has an untapped potential of straw fuels of 20 TWh on unused arable land of approximately 700 000 ha and further…
Manager: Marcus Öhman
Ongoing