Efficient syngas fermentation of gasified woody biomass

The project contributes to the development of efficient biological methanation of gasified woody biomass in a unique “solid state” reactor, developed and patented by Q Power.
Through thermal gasification of forest residues, demolition timber, park and garden waste, etc. the carbon and hydrogen content of the lignocellulosic material is made available to the microbes and thus biological conversion to methane. In this way, the raw material base is broadened.
The potential for these materials has been estimated to 59 TWh/year. Syngas fermentation enables cost-effective production on a smaller scale, <20 MW, which entails several advantages:
- It is easier to secure the feedstock supply and easier logistics.
- It is easier to match excess heat from the gasification process with local heat and steam demand.
- The financial risk is lower.
The project is expected to enable commercialization by 2030, double the Swedish biogas production within 15 years and contribute to an increased degree of self-sufficiency.
Read more about the project here.
Presentations from REGATEC 2024
A conference about the project was held as part of the programme for Regatec 2024. View the presentations here.

Jörgen Held
Baltic Energy Innovation Centre
info@beic.nu
Project information
Participants
Baltic Energy Innovation Centre
Q Power Oy
Linköping University
Nordvästra Skånes Renhållnings AB)
Scandinavian Biogas Fuels AB
Cortus AB
Time schedule
January 2023 - June 2025
Total cost of project
6 925 000 SEK
Swedish Energy Agency project number
2022-00570
More projects

Catalyst and process development for energy efficient production of bio-based vinyl acetate
Biobased ethanol as feedstock for the chemical industry is a promising alternative to fossil oil products, but the transition requires development of…
Manager: Mathilda Johansson
Ongoing

Classification and sustainability criteria for renewable fuels in the EU – what actually applies?
To promote increased use of sustainable fuels, the EU has introduced the Renewable Energy Directive (RED). RED includes a standardized methodology to…
Manager: Karin Pettersson
Ongoing

Sustainable aviation fuel from thermocatalytic refining of lignin and lignin-derivatives: development of biorefinery catalysts and reaction systems
This project aims to develop a cost-effective and efficient lignin refining technology as an alternative for petroleum refinery, with the goal of…
Manager: Linda Sandström
Ongoing